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ABSTRACT: Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–
Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the model-
ing and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not
been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configura-
tion of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability
are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses
is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC
aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about
4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average
of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could im-
prove the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort
toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to
improve the subseasonal-to-seasonal prediction.
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1. Introduction

During the past few decades, there have been great advances
in predicting the Madden–Julian oscillation (MJO; Madden and
Julian 1972), a dominant mode of tropical intraseasonal variability
(e.g., Kim et al. 2018; Jiang et al. 2020b). The MJO manifests as
a longitudinally oriented couplet of active and suppressed deep
convection that migrates eastward across the equatorial Indo-
Pacific. These convection anomalies represent perturbations in
atmospheric heating, which in turn drive anomalous circulation
and moisture patterns both locally within the tropics and re-
motely in the extratropics (e.g., Sardeshmukh and Hoskins
1988). Extended-range prediction of the MJO is crucial since it
provides a “forecast of opportunity” for global hazardous
weather events, such as extratropical cyclones, atmospheric riv-
ers, hail, and tornadoes (e.g., Mariotti et al. 2020).

Two aspects are useful when quantifying the accuracy of
MJO forecasts: prediction skill and predictability. Prediction
skill indicates what is achievable in a prediction system that
contains errors emanating from the imperfect model (repre-
sentation of the natural system) and the initial conditions
(characterization of the natural state at the start of the simula-
tion). Error from the imperfect boundary conditions could influ-
ence the prediction skill as well. For example, MJO is modulated
by lower boundary conditions (e.g., ocean–atmospheric coupled
processes; DeMott et al. 2015) as well as upper boundary condi-
tions (e.g., tropospheric–stratospheric coupling; Wang et al. 2019;
Martin et al. 2021), thus the imperfect boundary conditions simu-
lated in models could influence the MJO prediction skill. MJO
predictability has been regarded as an intrinsic limit of prediction
skill assuming a perfect model in which the system does not con-
tain errors from the model formulation, but errors from initial
and boundary conditions. MJO predictability is currently esti-
mated to be 6–7 weeks, while the actual prediction skill in state-
of-the-art dynamical forecasting systems ranges from 2 to 4
weeks (e.g., Kim et al. 2018).

Estimates of MJO predictability, as well as prediction skill,
can evolve over time as forecast systems improve. Perfect-
model experiments have provided a pathway to estimate MJO
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predictability. With the coarse resolution (48 3 58 horizontal
grid, 17 vertical layers) NASA Goddard Laboratory for
Atmospheres (GLA) global climate model (GCM), Waliser
et al. (2003) conducted a perfect-model experiment with one
control run and two ensembles and showed that the MJO pre-
dictability extended out to about 20–30 days for upper-level cir-
culation and 15 days for rainfall consistent with subsequent
studies (Liess et al. 2005). However, their conclusions were based
on a small number of MJO events and ensemble sizes due to lim-
ited computing resources. In addition, due to weakMJO variabil-
ity and poor simulation of the MJO propagation in earlier model
versions, these predictability studies underestimated the true pre-
dictability. Since these studies in the early 2000s, an assessment
of MJO predictability using perfect-model experiments has not
been revisited. Part of the reason for this is that GCMs were
not good enough for this type of “perfect-model” experiments.
Great effort has been made from the numerical modeling com-
munity to better simulate the MJO and some current GCMs
have improved for generations, such as the Community Earth
System Model version 2.0 (CESM2, Danabasoglu et al. 2020),
which shows reasonable MJO simulation to conduct perfect-
model experiments (Ahn et al. 2020; Chen et al. 2022).

Concurrent with the start of the Subseasonal-to-Seasonal
(S2S) forecast project (Vitart et al. 2017), studies began using
initialized reforecasts of collections of models (multimodels)
to estimate the MJO predictability and showed that the MJO
predictability can extend to 6–7 weeks (Kim et al. 2014; Neena
et al. 2014; Liu et al. 2017). These studies assessed the MJO
predictability of the initialized reforecast by treating the con-
trol run (or ensemble mean) as “truth” and comparing the
remaining ensemble members to the truth, similar to perfect-
model experiments. However, these initialized forecasts con-
tain significant systematic biases as the forecast lead time
increases, which often causes MJO propagation to be poorly
simulated (Kim 2017; Lim et al. 2018; Kim et al. 2019; Xiang
et al. 2022). Therefore, a perfect-model ensemble experiment
with reasonable MJO, large ensembles, and forecasts mimick-
ing the initialized forecast procedure will help to update our
current knowledge of MJO predictability. In this study we
conduct perfect-model ensemble forecast experiments with
the CESM2 aquaplanet.

While the performance of MJO simulation and prediction
have gradually improved, one of the main hurdles that plague
the modeling and forecasting communities is the so-called
Maritime Continent (MC) simulation and prediction barrier
(e.g., Yoneyama and Zhang 2020). Observational studies
have found that more than half of strong MJO events that
form over the Indian Ocean tend to weaken or dissipate when
reaching the MC (Feng et al. 2015; Kerns and Chen 2016;
Zhang and Ling 2017). This is due to the interaction among
multiple factors, including but not limited to the effect of a
persistent and strong diurnal cycle of convection over the MC
(Neale and Slingo 2003; Peatman et al. 2014; Hagos et al.
2016; Ling et al. 2019), land–sea contrast that mediates the di-
urnal convection and modulates the background moisture dis-
tribution (Hagos et al. 2016; Ling et al. 2019; Zhou et al.
2021), the impact of steep topography on circulation (Inness
and Slingo 2006; Wu and Hsu 2009), the suppression of

surface latent heat flux (Maloney and Sobel 2004; Sobel et al.
2010; Kim et al. 2011), and preferential moistening to the east
of MJO convection associated with the background moisture
distribution (e.g., D. Kim et al. 2021). Compared to nature,
most current numerical models and dynamical forecasting sys-
tems tend to overestimate the frequency of MJO events dissi-
pating near the MC. For example, although the CMIP6
models show general improvement of MJO characteristics
compared to CMIP5 models, only about 60% of CMIP6 mod-
els (20 out of 34) simulate realistic MJO propagation across
the MC (Ahn et al. 2020). By comparing 17 pairs of CMIP5
and CMIP6 simulations, Chen et al. (2022) found that the im-
provement of MJO propagation from CMIP5 to CMIP6 is still
limited. The model error in MJO propagation is partly attrib-
uted to biases in the land–sea precipitation contrast over the
MC (Chen et al. 2020, 2022) and in basic-state moisture,
which impacts the differential moistening process (i.e., prefer-
ential moistening to the east of MJO convection) that is essen-
tial for MJO propagation (Gonzalez and Jiang 2017; Jiang
2017; Ahn et al. 2020). In the dynamical forecasting systems,
such as the models participating in the S2S project or Subsea-
sonal Experiment project (SubX, Pegion et al. 2019), the MC
barrier effect is also exaggerated which eventually limits the
forecast skill of the MJO and its teleconnections. Wang et al.
(2019) found that most of the S2S reforecasts show decrease
of skill when prediction targets to forecast the MJO convec-
tion centered over the MC. A recent study by Xiang et al.
(2022) also showed that the MJO prediction skill for events
that propagate across the MC was higher than for events that
dissipate over the MC. The forecasted MJO propagation sig-
nal decays quickly, thus the forecasted frequency of MJO ter-
mination before reaching the MC is higher than observed
(Vitart 2017; Kim et al. 2018). The quick damping of MJO
propagation signal in reforecasts is partly explained by the
basic-state moisture biases (Lim et al. 2018; Kim et al. 2019).
Although it is obvious that the exaggerated MC barrier effect
limits the prediction of the MJO, complex interactions be-
tween the atmosphere–land–ocean system and the gradually
amplifying errors of each component as lead time increases
make the interpretation of the direct impact of MC on MJO
prediction difficult.

In this study, we will address the sole MC barrier effect on
MJO predictability with a reduced-complexity model. While
previous studies have examined the importance of the MC on
MJO processes by changing the MC configuration in numeri-
cal models (e.g., Tseng et al. 2017; Tan et al. 2020; Zhou et al.
2021), the MC’s impact on MJO prediction and predictability
has not been addressed. Studies have shown that the MJO
propagation is not well forecasted in dynamical systems, but
there is no quantitative measure of how much skill is lost by
the existing MC barrier. In other words, how far can MJO
prediction skill be extended by overcoming the exaggerated
MC barrier effect? To explore the MJO predictability by MC
barrier effect, we performed a perfect-model ensemble fore-
cast experiment with an aquaplanet model configuration.

In observations and full GCMs, the surface boundary con-
ditions are complicated with ocean, land, and mountains in
the tropics, as well as seasonal changes in large-scale monsoon
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systems that together impact the MJO. The use of a standard
(zero-topography) aquaplanet with prescribed sea surface
temperatures (SST) rules out the impact from land–sea con-
trast, orography, ocean–atmospheric feedbacks, and seasonal-
ity. Therefore, we can solely focus on the impact of changes in
lower boundary conditions. It needs to be emphasized that an
aquaplanet configuration is a highly idealized model and
some aspects of the simulation appear to be somewhat unreal-
istic compared to the real world. However, our purpose when
designing the aquaplanet experiments is to only introduce the
minimum amount of complexity yet still be able to capture
the most salient features of interest. As will be described in
the subsequent sections, the model still does a reasonable job
in simulating mean state and intraseasonal variability. Note
that the goal of this study is not a direct comparison of the
aquaplanet results to the real world, but rather to assess the
sensitivity of MJO predictability by changing the boundary
conditions in the idealized framework.

Section 2 describes the model settings and experimental de-
sign. The impacts of the prescribed SST and MC barrier on
basic state and tropical modes of variability are discussed in
section 3. The impact of the entrainment rate on MJO simula-
tion is investigated as well. In section 4, we examine the MC
barrier effect on MJO predictability with the perfect-model
ensemble forecast experiments. Section 5 provides the sum-
mary and discussion.

2. Data and methods

a. NCAR CESM2 aquaplanet

We use the aquaplanet configuration of the National Cen-
ter for Atmospheric Research (NCAR) Community Atmo-
sphere Model Version 6.0 (CAM6), which is the atmospheric
component of the CESM2. The CESM2 shows significant im-
provements over the previous version (Danabasoglu et al.
2020; Simpson et al. 2020). In particular, modes of tropical
variability such as convectively coupled equatorial waves
(CCEWs), MJO, and El Niño–Southern Oscillation (ENSO)
have improved significantly (Ahn et al. 2020; Capotondi et al.
2020; Danabasoglu et al. 2020; Chen et al. 2022). The CAM6
aquaplanet is the same numerical model as CAM6 but with
reduced complexity of the boundary conditions. The aquapla-
net experiments serve as a framework to develop and test
hypotheses beyond simpler models and distill salient fea-
tures of complex models (Hoskins et al. 1999). By damping
or removing processes that may be of secondary impor-
tance, atmospheric-only aquaplanet experiments have pro-
vided insights into the underlying processes of the MJO-like
modes and their future changes (Inness et al. 2001; Maloney et al.
2010; Andersen and Kuang 2012; Kang et al. 2013; Arnold et al.
2015; Maloney and Wolding 2015; Leroux et al. 2016; Pritchard
and Yang 2016; Shi et al. 2018; Bui and Maloney 2019; Das et al.
2019; Jiang et al. 2020a).

Here, we use the CAM6 aquaplanet on its default grid con-
figuration: a 0.98 3 1.258 horizontal resolution, 32 vertical lev-
els, and a finite-volume dynamical core. The aerosol effect is
removed, and carbon dioxide concentration is set to 348 ppm

(Medeiros 2020). The experiments follow the aquaplanet
experiment protocol (Williamson et al. 2013); the perpetual-
equinox insolation (341 W m22) is used such that the season-
ality is neglected, but the diurnal cycle is retained. Earth is
completely covered by water and there is no sea ice or topog-
raphy, thus the effect of land surface, land–sea contrast, and
land–atmosphere feedbacks are absent. To verify the simula-
tion results, daily mean data from the ECMWF interim rean-
alysis (ERA-Interim; Dee et al. 2011), NOAA Advanced
Very High-Resolution Radiometer (Liebmann and Smith
1996) Outgoing Longwave Radiation (OLR) product from
1979 to 2017, and Global Precipitation Climatology Project 18
daily version 1.2 (GPCP-1DD; Huffman et al. 2001) from
1997 to 2015 are used.

b. Experimental design

To examine the impact of the lower boundary conditions on
the simulation of basic-state and MJO activity, 10-yr perpetual
runs forced by three different configurations of fixed SST are
performed: control (CTRL), warm pool (WarmPool), and Mar-
itime Continent aqua-mountain (MCaquaMtn) experiments.
The CTRL run is prescribed with a zonally symmetric “QOBS”
SST profile that resembles the observed zonal-mean SST struc-
ture (Neale and Hoskins 2000) defined as

SSTQOBS 5
1
2

300 1 2 sin2
pu
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( )[ ]{ }
1

1
2
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120

( )[ ]{ }
,

where u (latitude in degrees) is between 608S and 608N. The
CTRL SST profile has a global average of 288 K. A maximum
SST of 300 K on the equator falls to 273 K at 608 latitude, and
uniformly 273 K from 608 to the polar caps (Fig. 1a). With this
CTRL SST profile, studies have investigated variability and
processes of MJO-like waves (Hsu et al. 2014; Shi et al. 2018;
Jiang et al. 2020a).

The “WarmPool” experiment is conducted to test the effect
of zonal SST asymmetry (Fig. 1b) on the basic state and MJO.
It is well understood that MJO convective anomalies are
tightly coupled to circulation anomalies over the Pacific warm
pool and decouple over cooler east Pacific (e.g., Madden and
Julian 1972). The MJO phase speed is also controlled by the
SST distribution, thus slower over the warm pool than other
ocean basins (e.g., Roundy 2012; D. Kim et al. 2021). Aqua-
planet experiments forced by warm pool–like SST show a
more reasonable basic state, MJO, and tropical intraseasonal
variability (Andersen and Kuang 2012; Maloney and Wolding
2015; Das et al. 2019; Wu et al. 2021), although results are
model dependent (Leroux et al. 2016). A 10-yr WarmPool
run is conducted by keeping everything identical to CTRL ex-
cept the SST distribution (Fig. 1b) which is constructed as
follows: First, we take the mean of March SST (HadISST;
Rayner et al. 2003) and calculate the SST departures
[SST′

WP(x, y)] from the zonal mean. Then, we calculate the
meridional average of SST′

WP(x, y) between 58S and 58N, re-
sulting in a zonal profile SST′

WP(x). This is further smoothed
by retaining 10 harmonics in longitude [̃SST′

WP(x)]. Then, the
smoothed zonal profile of SST anomalies is applied from 308S
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to 308N with a weight of 1.0 along the Equator tapered to a
weight of zero poleward of 308 latitude. With this approach,
the globally averaged SST and the zonal mean SST profile re-
main the same as CTRL. The prescribed SST pattern of the
WarmPool experiment and its deviation from the CTRL run
are displayed in Figs. 1b and 1c.

The “MCaquaMtn” experiment aims to explore the MC
barrier effects on MJO propagation and prediction. Surface
topography mimicking the MC landmasses is set to Earth-like
values and remains zero elsewhere. All terrain will remain
water covered; we call the terrain features “aqua-mountains.”
The WarmPool SST is prescribed, except that surface water
temperatures over the imposed aqua-mountains decrease by a
6.5 K km21 lapse rate (Fig. 1d). Note that the results show

negligible difference by changing the lapse rate as 6.5, 6.0, 5.0,
and 4.0 K km21 (not shown).

SSTs in the MCaquaMtn simulation can be as much as 21 K
colder than in the WarmPool run (Figs. 1e,f), and the air tem-
perature in the aqua-mountain is lower than in the WarmPool
case across the entire lower troposphere (not shown). With
the prescribed SST, the effect of the diurnal cycle of convec-
tion is suppressed and thus is neglected. In nature, land sur-
face temperatures in the higher terrain (e.g., Sumatra) warm
faster than surrounding regions at the same elevation, which
causes positive buoyancy, rising motion, and clouds/precipitation.
This MCaquaMtn experiment suppresses diurnal surface tem-
perature variance (and thus diurnal convection and related circu-
lations) by prescribing temporally constant surface temperatures.

FIG. 1. The SST (K) distribution in (a) CTRL, (b) WarmPool, and (d) MCaquaMtn runs, and (c),(e) the difference
from CTRL. (f) SST difference between MCaquaMtn and WarmPool.
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Although the diurnal cycle is essential for MJO as discussed
in the introduction, our goal of the MCaquaMtn experiment
is to keep everything as simple as possible, in the spirit of
the aquaplanet framework. The aqua-mountain’s elevation-
dependent surface temperature substantially reduces the
mean surface latent heat flux over the MC region (not
shown) and the physical presence of topography disrupts
low-level circulations, similar to the real Earth. Each of the per-
petual runs prescribed with CTRL, WarmPool, and MCaquaMtn
SSTs are simulated for 10 years (i.e., 120 months), and the simu-
lated basic state and tropical modes of variability are compared
in section 3.

3. SST and MC aqua-mountain effect on the basic state
and MJO simulation

a. Basic state: Impact of SST and entrainment rate

In CTRL, where the SST is zonally symmetric, precipitation
distribution follows the SST patterns and displays a maximum
confined to the equator with strong meridional convergence
at 850 hPa (Fig. 2a). Easterly trade winds are uniform over
the tropical belt and change to westerly at about 208S and
208N due to the temperature gradient (Fig. 2a). Compared to
the CTRL, the WarmPool SST is about 28C higher in the
Indo-western Pacific and at maximum 2.5 K colder in the eastern
Pacific (Fig. 1c). The zonal SST gradient induces a pressure gra-
dient that results in low-level convergence and maximum precip-
itation over the SST maximum area around 1508E (Fig. 2c, WP1
is the default CAM6 version). The general circulations are
shaped by the SST distribution which mimics the Walker and
local Hadley circulations, and the midlatitude jet core becomes
robust (Fig. 2c). The descending branch over the Indian Ocean
and associated low-level westerlies are confined to the equator.
The low-level westerly and meridional convergence on the pole-
ward side of it shifts the local maximum of precipitation off the
equator, thus forming a double intertropical convergence zone
(ITCZ) feature (Fig. 2c). Generally, a sharply peaked CTRL
SST profile leads to a single precipitation maximum, while a flat-
ter WarmPool SST leads to a double maximum (Leroux et al.
2016). Although the double ITCZ-like structure is a common
feature of aquaplanet simulations (Williamson et al. 2013), it is
highly model dependent and differs by physics packages (Leroux
et al. 2016; Benedict et al. 2017). For example, in the Commu-
nity Atmosphere Model version 5.0 (CAM5), the double ITCZ
is produced with a zonally symmetric SST forcing (Das et al.
2019), while it is not the case in CAM6 (Fig. 2a). In general, the
CAM6 WarmPool simulates improved large-scale atmospheric
structure than the CTRL.

Before moving on to the MJO, we will optimize the default
CAM6 model configuration for improved simulations of the
basic state and tropical modes of variability by changing the
cumulus entrainment rate in the WarmPool setup. Based on
the moisture mode theory of the MJO, an important factor
for the MJO is the sensitivity of deep convection to environ-
mental moisture (e.g., Zhang et al. 2020; Sobel and Maloney
2012, 2013; Adames and Kim 2016; Wang and Sobel 2022). In
an anomalously dry environment, entrainment will inhibit

convection build-up, while a moist environment will allow
buildup of deep convection (Bretherton et al. 2004). In recent
dynamical forecasting systems, however, the convection–
moisture relationship is not well simulated, and climate mod-
els tend to make precipitation in lower moisture regimes than
what is observed (Rushley et al. 2018; Kim et al. 2019). As
DeMott et al. (2007) demonstrated, the small entrainment
rate in the Zhang and McFarlane (1995) convective parameteri-
zation inhibits the subsequent development of deep convection
in CAM. Studies have shown that by changing the entrainment
rate}thus convection–moisture coupling}simulation and pre-
diction of tropical modes improve. For example, by doubling
the entrainment rate in CAM5, intraseasonal variabilities sub-
stantially improved due to the high sensitivity of convection to
free tropospheric humidity (Hannah and Maloney 2014; Bui
andMaloney 2019). With an aquaplanet configuration, Peatman
et al. (2018) showed that enhancing the entrainment rate im-
proves the simulation of the CCEW and MJO. Also, MJO pre-
diction is greatly improved in the ECMWF forecasting system
when the convective parameterization is changed in a way to in-
crease the sensitivity of deep convection to environmental mois-
ture, which allows moisture to build up and precondition the
atmosphere for deep convection (Bechtold et al. 2008; Hirons
et al. 2013a,b; Vitart 2014).

Given the importance of convection–moisture coupling for
MJO simulation, we change the fractional entrainment rate in
the calculation of dilute convective available potential energy
(CAPE). The entrainment rate is increased from 0.5, 1.0
(CAM6 default), 2.0, 5.0, and 10.0 km21 in the WarmPool set
up (hereafter WP0.5, WP1, WP2, WP5, and WP10, respec-
tively). For example, 2.0 km21 indicates doubling of entrain-
ment rate (higher entrainment rate) compared to the CAM6
default value of 1.0 km21. To test the sensitivity of model sim-
ulation to entrainment rate, the model with each configura-
tion is simulated for 3 years (36 months) and the basic-state
climatology is displayed in Figs. 2b–f. As the entrainment rate
increases (from Figs. 2b–f) and deep convection becomes
more sensitive to the environmental moisture, the precipita-
tion amount increases, and convection becomes generally
more confined in latitude to the equator and warm pool area
following the shape of the SST (Figs. 2b–f). The precipitation
averaged over the tropical band (58S–58N, Fig. 3a) clearly
shows an overall increase across the Indo-Pacific warm pool
as entrainment rate increases. Almost double the amount of
precipitation is simulated in WP10 compared to WP0.5 over
the warm pool area (Fig. 3a). The Walker and local Hadley-
like circulations also change associated with the change in
precipitation amount and distribution. The low-level westerly
wind over the equatorial Indian Ocean becomes weaker as the
precipitation increases over the Indian Ocean (Figs. 2 and 3).
Note that addressing the underlying physics of these changes
is beyond the scope of this study, and the sensitivity tests aim
to determine the best configuration for basic-state and MJO
simulation to be used for MJO predictability study.

Over tropical oceans, precipitation increases exponentially
when relative humidity reaches about 80% saturation, indicat-
ing the strong coupling between the precipitation and mois-
ture (Bretherton et al. 2004). However, in most GCMs and
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S2S/SubX models, the precipitation pickup occurs earlier than
the observed, meaning that precipitation occurs in less humid re-
gimes which can impact the MJO simulation fidelity (Jiang et al.
2015; Ahn et al. 2017; Rushley et al. 2018; Kim et al. 2019).
To examine the impact of the entrainment rate to moisture–
precipitation coupling, the distribution of precipitation rate in
each precipitable water (PW) bin is calculated over each grid
point and then averaged over the warm pool (158S–158N,
608E–1808) (Fig. 4). In observations (GPCP and ERAI), pre-
cipitation occurs when PW is above 45 mm, and increases ex-
ponentially beyond that. In the default CAM6, precipitation
tends to occur earlier and in a drier regime than that seen in

observational estimates over all PW bins. When the entrain-
ment rate is increased, thus precipitation becomes more sensi-
tive to environmental moisture, precipitation occurrence shifts
to a higher PW regime and becomes closer to the observation
(Fig. 4). Given that the higher entrainment rate simulates
reasonable mean state and precipitation–moisture relation-
ship, which is crucial for MJO simulation, we will use the
WP10 (10-times-larger entrainment rate than the default
CAM6) for the WarmPool and MC experiments for the rest of
the analysis, although a 10-times-larger entrainment rate is
somewhat too high and could directly and indirectly impact
simulation of other phenomena.

FIG. 2. Climatology of (left) precipitation (shading; mm day21) and (right) V850 (shading; m s21)
with horizontal wind vectors at 850 hPa (only values larger than wind speed of 6 m s21 are shown)
simulated by CTRL, WarmPool with various entrainment rate, and MCaquaMtn experiments.
Purple contours denote U850 (contour interval is 5.0 m s21).

J OURNAL OF CL IMATE VOLUME 365762

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:38 PM UTC



b. Tropical modes of variability: CCEWs and MJO

To assess the impact of the SST distribution to CCEWs and
MJO simulation, we perform a wavenumber-frequency spectral
analysis using daily OLR data averaged over the equatorial
band (158S–158N) and remove a smooth empirical background
noise spectrum (Wheeler and Kiladis 1999). Figure 5 shows the
ratio of the power of the wave to the total power in the symmet-
ric components about the equator. The signal is statistically sig-
nificant if the ratio is above 1.2 similar to Wheeler and Kiladis
(1999). In CTRL (Fig. 5b), the simulated Kelvin wave has
slower speed than the observation and the equatorial Rossby
(ER) wave is weaker than the Kelvin wave signal, consistent
with many aquaplanet experiments using the zonally symmetric
SST profile (Williamson et al. 2013; Leroux et al. 2016). An un-
realistically strong westward signal in the antisymmetric compo-
nent is simulated (not shown) due to the substantially stronger
the background easterly flow (Figs. 2a,f), consistent with previ-
ous aquaplanet study (Shi et al. 2018). When the warm pool
SST is prescribed, CCEWs become closer to the observed
(Fig. 5c), in general. The Kelvin wave becomes faster, ER power
increases, and spurious westward waves in antisymmetric com-
ponent reduce substantially (not shown) compared to CTRL.
The moisture source determined by the SST distribution may in-
fluence the Kelvin and ER wave coupling (Rui and Wang 1990;
Kang et al. 2013), thus making them more realistic.

Studies on aquaplanet simulations with zonally symmetric
SSTs have shown various ranges of MJO fidelity. Only half of
models capture the MJO power, indicating that the ability to
simulate MJO and more generally CCEWs depends on a
model’s ability to accurately represent subgrid-scale convec-
tion and the mean state (Leroux et al. 2016). With the zonally

symmetric SST in CAM5, the MJO-like signal is not well sim-
ulated and the MJO variability is concentrated on wavenum-
ber 1 only (Das et al. 2019). In CAM6, the MJO-like mode is
better captured in the CTRL run with the largest power con-
centrated broadly on wavenumbers 1–5 and at low frequency
(lower than 0.0625 cycles day21) (Fig. 5b). When theWarmPool
is added, the power in the MJO-like wave becomes stronger but
the maximum is shifted to higher frequency than the CTRL and
concentrated at wavenumbers 1–3 (Fig. 5c). To assess the ro-
bustness of MJO eastward-propagating feature, the east-to-west
ratio (E/W ratio) is obtained by dividing the sum of spectral
power over the “MJO band” (30–60 days, wavenumbers 1–3)
by that of its westward-propagating counterpart following Ahn
et al. (2017). The observed E/W ratio is about 2.4 for all seasons
in observations (Fig. 5a). The CTRL run shows too strong E/W
ratio (3.4) due to excessive east power over the MJO band,
while WarmPool shows weaker (1.8) than the CTRL mostly
due to the increase of westward power (Fig. 5c). The E/W ratio
in the WarmPool is like most CMIP models (Ahn et al. 2017).
The MJO-like mode in CTRL appears similar to observations
in spectral space (Fig. 5b), but in physical space this mode is
driven by stronger surface latent heat fluxes to the east of its
deep convective center (WISHE mode) which is inconsistent
with the observed MJO (Shi et al. 2018). Therefore, higher fre-
quency of the MJO-like mode in WarmPool is acceptable for
the simple aquaplanet framework, given that 1) its driving
mechanisms are more realistic than in those in CTRL (next sec-
tion) and 2) we must remember that the aquaplanet design is
highly simplistic and we should not expect a perfect match with
real world.

To examine the MJO-like variability in the WarmPool run,
the Real-Time Multivariate MJO (RMM;Wheeler and Hendon
2004) index is calculated with the OLR and zonal wind at 850
and 200 hPa. Following Wheeler and Hendon (2004), we do not
filter the daily variables for Fig. 6, but intraseasonally filtered
data produce similar results (not shown). Figure 6 shows the
two leading eigenvectors of the combined empirical orthogonal
function (CEOF) in the observation and WarmPool simulation.
Two modes together explain about 25% and 32% of the total

FIG. 3. (a) Precipitation (mm day21) and (b) U850 (m s21) aver-
aged over 58S–58N for each WarmPool entrainment-rate sensitivity
simulation (increase from light green to dark blue line) and MCa-
quaMtn simulation (brown line).

FIG. 4. Distribution of daily total precipitation rate in each
precipitable water (mm) bin in the WarmPool entrainment-rate
sensitivity simulations (increase from light green to dark blue line)
averaged over the Indo-Pacific warm pool (158S–158N, 608E–1808).
“Obs” indicates GPCP and ERAI (red line). The gray lines indi-
cate precipitation at 10 and 20 mm day21.
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variance in observation and in WarmPool run, respectively. The
daily time series of normalized principal components (PC) of
the CEOF are defined as the RMM1 and RMM2 index. The
observed first mode shows the negative OLR centered at about
908E, while it extends to 1508E in the simulation. In the second
mode, the model captures the convection peak near 1308E and
associated low-level convergence and upper-level divergence
(Fig. 6). Overall, despite the simplified model configuration,
convection and the associated baroclinic circulation structures
are well simulated compared to many contemporary GCMs
(Ahn et al. 2017).

The two-dimensional pattern of the MJO-like mode is pre-
sented with the MJO phase composites (Fig. 7). The MJO
composite maps in WarmPool run are computed with the
20–100-day filtered anomalies of OLR and horizontal wind at
850 hPa as a function of MJO phase defined by the simulated
RMM index. The eastward propagation signal is simulated

with strong MJO activity over the warm pool and decay of
MJO signal over the eastern Pacific cold tongue (Fig. 7) [the
corresponding observation can be found in Kim et al. (2018,
their Fig. 1)]. Overall, as hypothesized, the WarmPool run
simulates improved basic state, tropical modes of variability,
and eastward propagation of MJO-like waves. Therefore, we
will use this configuration to understand the MJO predictabil-
ity and compare it with the MCaquaMtn run.

c. MC barrier effect on the basic state and MJO

The main objective of this study is to understand the MC
barrier effect on MJO variability and predictability. In this sub-
section, we will compare the basic state and tropical modes of
variability in the MCaquaMtn experiment. By prescribing the
MC aqua-mountain, a sharp decrease in precipitation amount
is seen over the Maritime Continent (Figs. 2g and 3a). Total
amount of precipitation is reduced about 12 mm day21 at

FIG. 5. The symmetric OLR power spectrum ratios of tropical waves to the background power in the wavenumber–
frequency domain for (a) observation, (b) CTRL, (c) WarmPool, and (d) MCaquaMtn simulations. The power spec-
tra are calculated based on the OLR averaged between 158S and 158N. The theoretical dispersion curves for
the equivalent depths of 12, 25, and 50 m are superimposed. The ratio above 1.2 (indicated by the color) indicates
where the spectral signatures are statistically significant at the 95% confidence level. The E/W ratio is added above
each panel.
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maximum over the MC region compared to the WarmPool
simulation (WP10) (Fig. 3a). The reduction of the mean precip-
itation in MCaquaMtn run over the MC region is likely attrib-
uted to the reduced surface fluxes (not shown) which could
reduce available moisture and precipitation in the MC region.
The disruption of low-level convergence by the physical
presence of the mountains might act as a secondary effect
(Figs. 2f,g). The lack of convection near the MC splits the
precipitation into two local maxima}one in the western
Pacific and the other in the western Indian Ocean}along
with low-level wind changes associated with the convec-
tive activities (Figs. 2g and 3b). The E/W ratio in the MCa-
quaMtn is about 1.3 (Fig. 5c), weaker than the WarmPool
(1.8) mostly due to the decrease of eastward power.

Figure 8 shows the tropically averaged (58S–58N) daily
mean total precipitation in randomly selected periods of 500
consecutive days (Figs. 8a–c) and the standard deviation of
20–100-day filtered total precipitation over the entire 120 months
period (Figs. 8d–f) in CTRL, WarmPool and MCaquaMtn. In
the CTRL run, precipitation is distributed over the entire tropical
belt due to the zonally uniform SST (Fig. 8a). In the WarmPool
run, the convective activity is confined to the warm pool and
weakens substantially to the east of the date line where the SST
reduces sharply (Fig. 8b). The MCaquaMtn run does not simu-
late strong convective activities over the aqua-mountain (Fig. 8c).
The 20–100-day filtered variability is uniform over the tropics in
CTRL run, confined to the warm pool in WarmPool run, and is

split into two maxima on either side of the MC area in the
MCaquaMtn run (Figs. 8d–f). The results clearly show that the
MC aqua-mountain acts as a barrier for convective activity.

Hereafter, we will only compare WarmPool and MCaquaMtn
to examine the MC barrier effect on MJO propagation. To com-
pare the behaviors of anomalous convection before and after it
peaks over the Indian Ocean, 108S–108N averaged intraseasonal
(i.e., 20–100-day bandpass filtered) OLR and U850 anomalies
are correlated with a reference Indian Ocean (108S–108N,
608–908E) intraseasonal OLR time series. The results are plotted
in a lag–longitude map for WarmPool and MCaquaMtn runs
(Fig. 9). The eastward-propagatingMJO-like signals are well sim-
ulated in the WarmPool run with a near-quadrature phase rela-
tionship between convection and low-level circulation (Fig. 9a)
similar to observation. When the MC barrier effect is added, the
propagating convective signal from the Indian Ocean is blocked
around 1008E where the aqua-mountain influences the MJO
propagation (Fig. 9b). The circulation anomalies also become
weaker than the WarmPool. Results from the MCaquaMtn run
clearly indicate that the aqua-mountain acts as a barrier for MJO
eastward propagation.

Multiple factors may contribute to the barrier effect. The dis-
rupted mean low-level flow and reduced surface fluxes suppress
the convective activity overall in the vicinity of MC, and thus
prevent the MJO from maintaining its amplitude as it propa-
gates. Also, a drier atmosphere over the MC area (Fig. 2g) does
not support positive horizontal moisture advection to the east

FIG. 6. First two eigenvectors of combined EOF analysis of 158S–158N-averaged normalized daily OLR (gray
shading), U850 (red solid line), and U200 (blue solid line) anomalies for (top) observation and (bottom) WarmPool
run. EOFs are indicated as normalized amplitude.
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of the convection, which is crucial for MJO eastward propaga-
tion (e.g., Jiang et al. 2020b). Thus, the MJO signal from the In-
dian Ocean decays quickly as it propagates over the MC area
where the moisture supply is not enough to maintain the MJO.
Overall, the convective activity over the Indian Ocean is sup-
pressed (Figs. 8c,f), likely due to strong low-level easterly flow
blowing over the Indian Ocean from the MC region (Fig. 2g)
which advects dry air to the west of MC and suppresses the con-
vective activity, limiting MJO initiation. Detailed examination
of plausible mechanism warrants further analysis.

4. Maritime Continent barrier effect on MJO
predictability

a. Perfect-model ensemble forecast experiments and
evaluation metrics

To understand the MC barrier effect on MJO predictability,
perfect-model ensemble forecast experiments with and with-
out the MC barrier are performed via two steps (Fig. 10):
step 1 is the perpetual run and step 2 is the perfect-model

ensemble forecast. In step 1, we perform a 10-yr perpetual run
with WarmPool SST and save the restart files every 10 days. The
analysis of the WarmPool run (WP10) examined in section 3 is
based on this experiment. This control perpetual run is con-
sidered as truth. In step 2, we use the restart files from step 1
as atmospheric initial conditions and integrate the model for
45 days. Each 45-day forecast consists of 10 ensembles that
are generated by perturbing the temperature randomly in the
initial conditions (the parameter “pertlim” is used to produce
the perturbation). Then, the 45-day forecasts are compared
with the truth. This forecast experiment is performed based
on the 10-yr perpetual WarmPool run, thus we have a total of
360 cases of 45-day forecast sets (10 years 3 36 cases per
year). In step 2, forecast experiments are conducted with two
types of boundary conditions: WarmPool and MCaquaMtn
SST used in section 3. The predictability analysis for both
WarmPool versus MCaquaMtn run will provide us the esti-
mate of MJO predictability and the predictability loss due to
the MC barrier.

The MJO prediction skill is assessed in a similar way to op-
erational forecasts by using conventional evaluation metrics
(Kim et al. 2018). The forecasted anomalies from bothWarmPool
and MCaquaMtn runs are projected onto the eigenvectors of
the observed CEOF (Figs. 6a,b) and normalized to obtain the
forecasted RMM indices. Note that when the CEOF eigenvec-
tors from model simulations are projected to forecasted anom-
alies, results of predictability are almost identical. The RMM
forecast is compared between the truth (i.e., perpetual run
from WarmPool) and ensemble forecasts from WarmPool and
MCaquaMtn using four metrics: the bivariate correlation coef-
ficient (BCOR), bivariate root-mean-square error (BMSE),
signal, and noise (H. Kim et al. 2018, 2021; Lim et al. 2018) de-
fined as

BCOR(t) 5
∑
N

t51
[T1(t)F1(t, t) 1 T2(t)F2(t, t)]																								

∑
t5N

t51
[T2

1 (t) 1 T2
2 (t)]

√ 																														
∑
t5N

t51
[F2

1 (t, t) 1 F2
2 (t, t)]

√ ,

(1)
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N
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N 2 1

∑
t5N

t51
[F1(t, t)

2
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2], (3)

Noise (t) 5 1
N(E 2 1) ∑

t5N

t51
∑
E

e51
[F′

1,e(t, t)
2
1 F′

2,e(t, t)
2], (4)

where T1(t) and T2(t), respectively, are the RMM1 and
RMM2 from the truth at time t, and F1(t, t) and F2(t, t) are
the forecasted RMM1 and RMM2 at time t with a lead time
of t days. The overbar indicates the ensemble mean and
prime denotes individual ensembles’ deviations from the en-
semble mean. Signal refers to the variability of the ensemble

FIG. 7. MJO life cycle composite of 20–100-day filtered OLR
(shading) and 850 hPa horizontal wind (vectors) anomalies in phases
1 to 8 (P1–P8) from the WarmPool experiment. The number of days
falling within each phase is given in the parenthesis.

J OURNAL OF CL IMATE VOLUME 365766

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:38 PM UTC



mean forecast and noise refers to the variability of individual
forecasts around the ensemble mean (i.e., ensemble spread).
E and N denote the number of ensemble members and the
number of forecasts, respectively (here, E 5 10 and N 5 360).
Note that the results are not sensitive to initial MJO ampli-
tude, therefore we use all forecasts regardless of the initial
MJO amplitude to have sufficient sample size.

b. Maritime Continent barrier effect on MJO
predictability

The MJO predictability in the WarmPool and MCaquaMtn
experiments are compared in Fig. 11. When taking BCOR5 0.5
as a reference, the ensemble-mean shows an approximately
6-week (day 40) MJO forecast skill in the WarmPool run
(Fig. 11a), consistent with the theoretical estimate of MJO

predictability found in earlier GCM studies using Earth-like con-
figurations (Kim et al. 2014; Neena et al. 2014). When the MC
barrier is added, the MJO propagation is interrupted by the MC
and the skill decreases to 4 weeks (day 28), approximately
12 days less due to the MC barrier (Fig. 11a). The reduced skill
is likely due to the aqua-mountain that makes the processes for
MJO propagation harder to predict in the MCaquaMtn run.
Ensemble averaging removes errors emanating from the atmo-
spheric initial uncertainties in the single-member forecasts. In
WarmPool, BCOR increases about 7 days in the ensemble-
mean than the average of single-member ensembles (Fig. 11a).
However, in the MCaquaMtn, ensemble mean skill increases
only about 3 days over the single-member mean, indicating that
taking the ensemble mean is not as effective as the WarmPool.
This is likely due to the large spread among ensembles in the

FIG. 8. Total daily precipitation (mm day21) averaged over 58S–58N during 500 consecutive
days in (a) CTRL, (b) WarmPool, and (c) MCaquaMtn experiments. Standard deviation of
20–100-day filtered daily total precipitation calculated over 120 months in (d) CTRL, (e) Warm-
Pool, and (f) MCaquaMtn experiments.
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MCaquaMtn (box-and-whisker plots in Fig. 11). Note that the
BCOR skill difference between WarmPool and MCaquaMtn is
larger when MJO is initially located in the west of the MC
(phases 2 and 3) than the western Pacific (phases 5 and 6) (not
shown). This is mainly due to the higher skill of the MCaquaMtn
run as they do not encounter the MC when initialized over the
western Pacific. However, due to the limited sample size, we
show the results of all phases rather than dividing them into
eight phases.

The BMSE grows rapidly and reaches the 2.0 line (arbi-
trarily chosen threshold) at day 18 in the MCaquaMtn simula-
tion, about 10 days earlier than for WarmPool (Fig. 11b). In
WarmPool run, MJO forecast signal (variability of ensemble-
mean) gradually decreases and reaches the 2.0 line (arbitrarily
chosen threshold) at day 38. The signal decreases faster in the
MCaquaMtn and reaches the threshold at day 32 (Fig. 11b).
The forecast noise (ensemble spread) is rather comparable until
four weeks, when it becomes slightly smaller in the MCaquaMtn.
Theoretically, small ensemble spread indicates high forecast
confidence and large spread indicates low confidence. The en-
semble spread (i.e., noise) and ensemble-mean error (i.e.,
BMSE) diagnostics together provides a reliability measure,
that is at what forecast lead time the ensemble forecasts are
over- or underdispersive, hence unreliable. If an ensemble

system is perfect with a large sample of forecasts, the error
and spread is considered to be equal (Weisheimer et al. 2011).
In both WarmPool and MCaquaMtn, the BMSE consistently
exceeds the noise, indicating that both ensemble forecast sys-
tems are underdispersive (Fig. 11b). The gap between the
BMSE and noise becomes larger in the MCaquaMtn than
WarmPool, meaning that the ensemble forecast system be-
comes less reliable by adding the MC barrier. Given that the
MJO forecasts in current S2S models are mostly underdisper-
sive (Kim et al. 2018), improving the exaggerated MC barrier
effect could reduce the gap between ensemble spread and er-
ror, thus enhancing the reliability of the ensemble systems.

Another question we want to address is whether the MC is
an intrinsic MJO predictability barrier or not. Studies have
shown prediction skill decrease by the exaggerated MC bar-
rier effect, but MJO predictability is not influenced by the
MC barrier (Neena et al. 2014; Kim et al. 2014). These studies
were based on initialized dynamical forecasting systems, thus
forecasts are contaminated by both model and initial condi-
tion error. To examine whether the MC acts as a barrier for
intrinsic predictability of MJO, we perform the same perpet-
ual and perfect-model ensemble forecast experiment as shown
in Fig. 10, but with MCaquaMtn SST prescribed to both runs.
In step 1, the truth is the perpetual run with the MCaquaMtn

FIG. 9. Lag–longitude evolution of correlation coefficients of anomalous OLR (W m22: shading) and U850 (m s21;
contour interval: 0.2, starting from 0.2) in (a) WarmPool and (b) MCaquaMtn runs. The lag correlation coefficient of
20–100-day bandpass-filtered anomalies against OLR averaged over the equatorial eastern Indian Ocean (108S–108N,
608–908E) is displayed. Coefficients are averaged over 108S–108N. Purple dashed lines denote the 5 m s21 phase speed,
which is close to the observed MJO phase speed. Purple solid lines indicate 0 lag and 1008E, respectively.
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SST, and in step 2 the perfect-model ensemble forecast is per-
formed with MCaquaMtn SST as well. All other processes are
the same as shown in Fig. 10. By comparing the ensemble fore-
casts with the truth (both with MCaquaMtn SST prescribed),
we can examine the MJO predictability, i.e., the model’s capa-
bility to predict itself when the MC barrier exists. The forecast
skill (BCOR) is shown in Fig. 11a as gray line. The predictabil-
ity is close to the predictability with WarmPool SST (blue line),
indicating the model is able to predict itself whether MJO is
propagating or disrupted by the MC barrier. This confirms the
conclusions from previous studies that the MC is not acting as
an intrinsic predictability barrier of MJO, but as a prediction
barrier due to the model inability in capturing the MJO propa-
gation. The results from this study, altogether, indicate that the
existence of the MC itself does not reduce the MJO predictabil-
ity. However, the exaggerated MC barrier in numerical models,
i.e., the inability of models in forecasting the MJO propagation,
reduces the MJO prediction skill for about 1.5 weeks.

5. Summary

This study revisits the MJO predictability with perfect-
model assumption, which has not been investigated for almost
two decades. We provide an update of the MJO predictability
using a state-of-the-art GCM that simulates a reasonable
MJO and mean state. We conducted experiments with the
Community Earth System Model (CESM) version 2}the lat-
est version of the model}in its aquaplanet configuration. To
examine the impact of the Maritime Continent barrier on
MJO predictability and prediction skill, we have performed
perfect-model forecast experiments with several different
patterns of prescribed SSTs. When a tropical SST distribution

approximating the observed Indo-Pacific warm pool is pre-
scribed, both basic state and tropical modes of variability be-
come closer to the observed than simulations with zonally
symmetric SST. When the MC aqua-mountain is added, the
eastward propagation of the MJO is disrupted. The predict-
ability estimates show that the intrinsic MJO predictability is
approximately 6 weeks regardless of the existence of MC but re-
duces to 4 weeks when the forecasted MJO is blocked by the
MC barrier while it propagates in reality (truth). Also, with the
exaggerated MC barrier effect, the forecast error increases faster,
and signal reduces faster than the WarmPool run, indicating that
the forecast is less reliable.

Previous studies have argued that the current dynamical
forecasting systems possess an exaggerated MC barrier effect
which prevents the MJO prediction skill from reaching its po-
tential predictability. However, the amount of skill lost due to
the MC barrier}or, alternatively, the amount of MJO skill
improvement we could expect from alleviating the MC barrier
effect}has not been clearly addressed. This study provides a
quantitative measure of predictability loss by the exaggerated
MC barrier. Note that this is an idealized model study, so
the experiments which are treated as truth do not represent
the true nature. One implication of this study relevant to the
MJO forecast community is that, if MJO propagation is better
forecasted, the skill can improve by about 2.0 weeks solely by
making the MJO cross over the MC. Given that the recent op-
erational forecasts show an average of 3–4 weeks of MJO pre-
diction skill, we can conclude that improving the propagation
of the MJO across the MC could improve the MJO skill to
5–6 weeks, close to the potential predictability found in this
study. Therefore, more effort on understanding and improv-
ing the MJO propagation is needed to enhance the MJO and

FIG. 10. Schematic of experiments: (left) step 1 is the perpetual runs and (right) step 2 is the perfect-model ensem-
ble forecast experiment. The blue line represents the 10-yr perpetual simulation, which is regarded as “truth.” Orange
dots are the restart files output every 10 days, which are used for initial conditions in step 2. Orange arrows are the
10 ensembles of 45-day forecasts. Green shading represents the prescribed SST.
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MJO-related forecasts to improve the overall S2S prediction.
A recent field campaign and model experiments could help to
address these issues (Yoneyama and Zhang 2020).
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